Imaging -Research Directions Sensors and Sources

John Gore
Vanderbilt University Institute of
Imaging Science

March 2003

Philosophy

- Imaging in the past = radiological diagnosis
- Imaging in the future = obtaining information on tissue biology, in disease and health
 - Broader group of users within biomedicine
 - Different modalities complement each other can/should be fused
 - To be useful not all imaging has to be
 - » 3D
 - » Non-invasive
 - » High spatial resolution
 - Animal studies esp. genetically altered mice, will push technical ideas - these may then inform and affect human imaging systems

Magnetic Resonance Imaging

- New technical developments can be led by understanding the nature of the information available (E.g. fMRI)
- Factors affecting NMR properties still poorly understood (in detail)
 - Physical and physiological factors
 - Relaxation, Diffusion, BOLD, MT, Order (MQC),
 other properties what do these tell us? <u>No quantitative</u> models to explain tissue NMR properties
 - Biological basis of imaging connection of biophysics to imaging

MRI/MRS - Sensors

-1980 = 4 MHz

- 2003 = 400 MHz
- Prediction push to higher field will continue despite costs, engineering problems
- Need "sensors" at high field RF coils
 - High field arrays; local coils inc. gradients
 - Catheter and endoscopic coils
 - Coils combined with e.g. optical sensors
- System designs to reduce susceptibility effects e.g. dynamic shimming

Dynamic Shimming

Field plot in brain slice

8th-slice Dynamic

Field plot in brain slice
- global shimming

Field plot in brain slice - dynamic slice shimming

Higher field

- Higher SNR
- Higher resolution
- Faster
- Greater spectral dispersion for MRS
 - "MRS is the method of the future and always will be"
 - New reality at higher fields
- Different contrast mechanisms dominate
 - E.g. Chemical exchange CEST agents BOLD etc.

MRI / MRS / MASS SPEC Integration

Proton spectrum at 7T from 100 µL volume

MALDI TOF MS
- 3 different MW

Functional Imaging at 7T

Data courtesy D. Rothman, R. Caprioli

Optical + NIR Imaging

- Tissue minimum≈820 nm
- NIR Microscopic imaging (e.g. 2-photon confocal) possible in mice (>1cm)
- NIR fluorophores for molecular targeting

Wavelength dependence of absorption by water and tissue

NIR detection of cortical flow and oxygenation

Near Infra Red Tomography

fMRI + NIR

NIR surface map

Integration e.g. NIROT + ERP + TMS + fMRI

Bioluminescent Imaging

- Bioluminescent imaging (e.g. luciferase) sensitive to molecular and cellular processes
- Links imaging to molecular biology
- Tomographic imaging possible ?
- Combine with MRI, other modalities

Summary

- MRI
 - New techniques/technology
 - Understanding the origins of image information
- Optical

Image fusion